Claritas Announces Letter of Intent to Acquire Worldwide Rights to R-107 for Treatment of Wound Healing, Skin Ulcers and Severe Burns |
Monday, 17. January 2022 13:30 |
---|
SAN FRANCISCO, CA and TORONTO, ON, Jan. 17, 2022 (GLOBE NEWSWIRE) -- Claritas Pharmaceuticals, Inc. (TSX VENTURE: KLY and OTC: KALTF) (the "Company" or "Claritas") today announced that it has signed a Letter of Intent dated January 17, 2022 (the “LOI”) with Salzman Group, Inc. (a Delaware corporation), Salzman Group, Ltd. (an Israeli corporation), and Salzman Group Pty. Ltd. (an Australian corporation), (collectively, the “Salzman Group”), under which Salzman Group will grant to Claritas an exclusive, worldwide license to develop and commercialize R-107 for the treatment of skin ulceration and wound healing, including the treatment of severe burns. Highlights
R-107 is a liquid, nitric oxide-releasing molecule with issued and pending composition of matter and method of use patents in approximately 40 countries, including the U.S., Australia, Brazil, China, Europe, India, Japan, Russia and South Korea. Claritas previously licensed R-107 from Salzman Group for the treatment of both COVID-related lung disease and non-COVID pulmonary diseases. In accordance with the LOI, and subject to the approval of the TSX Venture Exchange, Claritas will enter into a new license agreement with Salzman Group for the development and commercialization of R-107 for the treatment of skin ulceration and wound healing, including the treatment of severe burns (the “License”). The Company expects to enter into the License by mid-February 2022. Naturally produced nitric oxide participates in the wound healing process by stimulating the synthesis of collagen, triggering the release of chemotactic cytokines, increasing blood vessels permeability, promoting angiogenic activity, stimulating the release of epidermal growth factors, and by interfering with the bacterial mitochondrial respiratory chain. “Based on extensive research with nitric oxide in treatment of burn wounds, we believe that R-107 is an extraordinary product candidate for the treatment of severe burns," said Robert Farrell, President and CEO of Claritas. “There is an important unmet medical need for a viable treatment to help patients heal from life-threatening severe burns, and we believe that R-107 will address this unmet need." "Severe burns represent some of the most horrific injuries a human can endure," said Perenlei Enkhbaatar, MD, PhD., FAHA, a member of Claritas’ board of directors and an internationally renowned authority and leader on the biology and pathophysiology of nitric oxide. "In spite of major advances in burn care, we have reached a limit in our ability to heal severe burns with currently available products. Nitric oxide has been shown to promote tissue repair and healing in animal models of acute burn wounds, and nitric oxide-releasing R-107 may overcome the difficulties and limitations encountered with direct administration of nitric oxide itself.” Nitric Oxide Nitric oxide is produced by virtually every cell type in the body and plays an important role in controlling the normal function of cells. It has been demonstrated that this ubiquitous, naturally occurring molecule plays an important role throughout the body. Recent studies have demonstrated the effectiveness of nitric oxide as a potential therapy in the treatment of skin ulceration and burn wounds, including the treatment of severe burns. Nitric Oxide-Releasing R-107 in Treatment of Severe Burns Nitric oxide gas has been shown to play a significant role in the promotion and regulation of diverse wound healing processes, including burn wounds.1 For example, nitric oxide has been shown to enhance angiogenesis, epithelial cell migration, collagen synthesis, and wound closure.2 These cellular and physiological responses all suggest that nitric oxide plays a critical role in the overall wound healing process; and studies involving the application of nitric oxide further support its potential utility for wound healing and tissue repair and regeneration.3 4 Nitric oxide has also been shown to promote tissue repair and healing in animal models of diabetic ulcers and skin lacerations, as well as in acute burn wound models.5 6 For example, the application of a nitric oxide containing gel to full thickness burns in a rodent model has shown significant improvements in the rate of healing (wound closure) and re-epithelization.7 8Wound closure is of critical importance in this setting to promote healing and to reduce the risk of a variety of infections, including sepsis.910 However, most studies of nitric oxide in wound healing have involved topical application of gels designed to stimulate the body’s own natural production of nitric oxide, and thus generate only minute amounts of nitric oxide locally. Direct delivery of therapeutically relevant doses of nitric oxide gas to the wound site has been accomplished, although this method is complicated by nitric oxide’s instability in air and the difficulty of delivering it in a clinical setting. R-107 potentially provides a more rational approach to nitric oxide-based wound healing treatment:
To promote more rapid wound closure and prevent infection at the burn wound site and at the donor skin graft site, Claritas will develop R-107 for administration in both a liquid solution formulation and in an ointment formulation. The R-107 liquid formulation will be a 10% solution of R-107 in PEG400 for 14-day irrigation of wound dressings for: (1) administration to skin grafts after excision of full thickness burns; and (2) administration to split-thickness skin donor sites. The R-107 ointment formulation will be a 10% solution of R-107 in PEG400/3500 ointment for subacute and chronic therapy of skin grafts after excision of full thickness burns. One of the most difficult long term-effects of a severe burn is the hypertrophic scarring that occurs at the burn wound site. Scarring is not only a cosmetic issue. Scarring also causes contractures around joints, so that limbs and fingers can become difficult or impossible to move, requiring surgery to release such contractures. Burn wound site scarring is caused by over-expression of collagen. Normally, nitric oxide suppresses TGF-beta mediated stimulation of collagen expression. However, in a burn wound, TGF beta is up-regulated, and causes over expression of collage. Studies have demonstrated that nitric oxide suppresses TGF-beta and thereby reduces the over-expression of collagen. For example, when sodium nitroprusside, a nitric oxide donor, was given, collagen expression was very strongly inhibited.
Claritas believes that nitric-oxide releasing R-107 may provide significant improvements in the rate of burn healing (wound closure) and re-epithelization, and a concomitant reduction in hypertrophic scarring, leading to better patient outcomes, reduced hospital stays, and diminished healthcare costs. Terms of the LOI The LOI which Claritas has entered into with the Salzman Group provides that Salzman Group will grant to Claritas an exclusive, worldwide license (the “License”) to develop, manufacture and commercialize R-107 for the treatment of skin ulceration and wound healing, including the treatment of severe burns (“Skin Ulcers and Wound Healing Indications”). Under the terms of the LOI, Claritas has agreed to provide the following compensation to Salzman Group in consideration for the License:
About Claritas Pharmaceuticals
Cautionary Statements This press release may contain certain forward-looking information and statements ("forward-looking information") within the meaning of applicable Canadian securities legislation, that are not based on historical fact, including without limitation in respect of its product candidate pipeline, planned clinical trials, regulatory approval prospects, intellectual property objectives, and other statements containing the words "believes", "anticipates", "plans", "intends", "will", "should", "expects", "continue", "estimate", "forecasts" and other similar expressions. Readers are cautioned to not place undue reliance on forward-looking information. Actual results and developments may differ materially from those contemplated by these statements depending on, among other things, the risk that future clinical studies may not proceed as expected or may produce unfavorable results. Claritas undertakes no obligation to comment on analyses, expectations or statements made by third parties, its securities, or financial or operating results (as applicable). Although Claritas believes that the expectations reflected in forward-looking information in this press release are reasonable, such forward-looking information has been based on expectations, factors and assumptions concerning future events which may prove to be inaccurate and are subject to numerous risks and uncertainties, certain of which are beyond Claritas’ control. The forward-looking information contained in this press release is expressly qualified by this cautionary statement and is made as of the date hereof. Claritas disclaims any intention and has no obligation or responsibility, except as required by law, to update or revise any forward-looking information, whether as a result of new information, future events or otherwise. Contact Information 1 Nitric oxide promotes epidermal stem cell proliferation via FOXG1-c-Myc signalling: Zhan R, Wang F, Wu Y, Wang Y, Qian W, Liu M, Liu T, He W, Ren H, Luo G. - Nitric Oxide. 2018 Feb 28;73:1-8. doi: 10.1016/j.niox.2017.12.002. Epub 2017 Dec 14. - PMID: 29248687 4 Nitric oxide enhances keratinocyte cell migration by regulating Rho GTPase via cGMP-PKG signalling: Zhan R, Yang S, He W, Wang F, Tan, J, Zhou J, Yang S, Yao Z, Wu J, Luo G. - PLoS One. 2015 Mar 23;10(3):e0121551. doi: 10.1371/journal.pone.0121551. eCollection 2015. PMID: 25799230 Free PMC article. 5 Nitric oxide activates intradomain disulfide bond formation in the kinase loop of Akt1/PKBα after burn injury: Lu XM, Tompkins RG, Fischman AJ. - Int J Mol Med. 2013 Mar;31(3):740-50. doi: 10.3892/ijmm.2013.1241. Epub 2013 Jan 11.
![]() |
Related Links: |
Author: Copyright GlobeNewswire, Inc. 2016. All rights reserved. You can register yourself on the website to receive press releases directly via e-mail to your own e-mail account. |